Formal language theory

A. Overview

(1) a. What is Statistical NLP?
 b. Why do this?
 c. Finite state machines
 d. Context-free languages
 e. Chomsky-Normal Form
 f. Linear/Regular Grammars

B. Why do this?

(2) Which book did you read t without buying t?

(3) \[H_0 = \{ a, aa, aaa, \ldots \} \]
 \[H_1 = \{ a \} \]
 \[H_2 = \{ a, aa \} \]
 \[H_3 = \{ a, aa, aaa \} \]
 \[H_i = \{ a, aa, \ldots, a_i \} \]

C. Formal language

(4) A formal language is a possibly infinite set of words constructed from some finite alphabet.

(5) A regular language is a language that can be described using only three operations: union, concatenation, and Kleene star, e.g. \(a(b|c)d^* \).

(6) \(a_nb_n \): \(ab, aabb, aaabbb \), etc. is not regular.

(7) \((CV|CVC)(CV|CVC)^* \)

D. Finite State Machines

(8) A simple FSA

![Diagram of a simple FSA with states S1, S2, and S3 and transitions labeled 'a' and 'b'.]
(9) Concatenation

\[\begin{array}{c}
 s1 \xrightarrow{a} s2 \xrightarrow{b} s3 \\
\end{array} \]

(10) Union

\[\begin{array}{c}
 s1 \xrightarrow{a} s2 \\
 s1 \xrightarrow{b} s2 \\
\end{array} \]

(11) Kleene star

\[\begin{array}{c}
 s1 \xrightarrow{a} s1 \\
\end{array} \]

(12) Two FSAs

\[\begin{array}{c}
 s3 \xrightarrow{b} s4 \\
 s1 \xrightarrow{a} s2 \\
\end{array} \]

(13) Concatenated FSAs

\[\begin{array}{c}
 s1 \xrightarrow{a} s2 \xrightarrow{b} s3 \\
 s1 \xrightarrow{b} s2 \\
\end{array} \]
(14) union of two FSAs

(15) Kleene star

(16) Deterministic FSA

(17) Nondeterministic FSA
(18) FSA with null transition

![Diagram](attachment:image.png)

E. Re-write rules

(19) Context-free languages

- terminals: a, b
- non-terminals: A, B
- starting node: A
- production rules:
 - $A \rightarrow a \ B \ b$
 - $B \rightarrow a \ b$
 - $B \rightarrow \emptyset$

(20) Chomsky-Normal Form

a. $A \rightarrow BC$, where A, B, and C are non-terminal symbols.
b. $A \rightarrow a$, where A is a non-terminal and a is a single terminal.

(21) Linear grammars

a. $A \rightarrow a_1 \ldots a_n$, where a is a terminal element.
b. $A \rightarrow a_1 \ldots a_n B$, where B is a single non-terminal element.

References
